

Electromagnetic Compatibility & Electrical Safety

Business name: R & D Automotive and Mechatronics Foundation - NIF: G31704232

Head office: C/ Tajonar, 20 31006 Pamplona (Navarra) Spain T. +34 948 29 29 00 - Fax +34 948 29 29 10

Technical office: Polígono Mocholí, Plaza Cein nº 4 31110 Noáin (Navarra) Spain

T. + 34 848 420 800 – Fax + 34 948 31 77 54 e-mail: <u>info@naitec.es</u> - <u>http://www.naitec.es</u>

This report is certified by CETENA Foundation

This document may be copied or distributed as a whole

This document has 53 pages excluding the cover page

REPORT Nr: PR180759

Written for: Monsol Electronic, S.L.

Related to: EMC Tests practiced on

"CcM2" AC measurement device

INI	NDEX			
1.	GENERAL CONDITIONS	3		
2.	GUARANTIES	4		
2	TECT OLIADA OTEDIOTICO	F		
3.	TEST CHARACTERISTICS			
	5.1. TESTS CARRIED OUT	5		
4.	TESTING CONDITIONS	8		
	4.1. ENVIRONMENTAL CONDITIONS	8		
	4.2. EQUIPMENT USED	8		
	4.3. TESTS TIME MAP	10		
5.	EUT IDENTIFICATION DATA	11		
	5.1. TEST PETITIONER AND EUT SUPPLIER	11		
	5.2. TESTED EQUIPMENT IDENTIFICATION	11		
	5.3. TESTED SAMPLE IMAGE	13		
	5.4. TESTED EQUIPMENT MODES OF OPERATION	14		
	5.5. TESTED EQUIPMENT MONITORING CONDITIONS			
	5.6. PERFORMANCE CRITERIA APPLIED	14		
6.	TEST RESULTS	16		
	6.1. EMISSION RESULTS	16		
	6.1.1. CONDUCTED EMISSION. HARMONIC CURRENT			
	MEASUREMENT	16		
	6.1.2. CONDUCTED EMISSION. VOLTAGE FLUCTUATIONS AND			
	FLICKER	21		
	6.1.3. RADIATED EMISSION. DISTURBING RADIATED FIELD (1)	23		
	6.1.4. CONDUCTED EMISSION. CONDUCTED DISTURBANCE			
	MEASUREMENT	26		
	6.2. IMMUNITY RESULTS	30		
	6.2.1. IMMUNITY TO ELECTROSTATIC DISCHARGES	30		
	6.2.2 IMMUNITY TO REFIELDS	33		

6.2.3. IMMUNITY TO EFT/BURSTS	37
6.2.4. IMMUNITY TO SURGES	40
6.2.5. IMMUNITY TO COMMON MODE RF FIELD	42
6.2.6. IMMUNITY TO INDUSTRIAL FREQUENCY MAGNETIC FIELD	45
6.2.7. IMMUNITY TO VOLTAGE DIPS AND SHORT INTERRUPTIONS	48

1. GENERAL CONDITIONS

This report refers only and exclusively to the objects and equipments that have undergone the test.

This report does not represent or prove to be the Certification of the Product. This must be expedited by the Certification Bodies or competent Authorities.

2. GUARANTIES

NAITEC guaranties professional discretion by all its personnel in relation with the accomplishment of the works it carries out. All the data regarding the testing as well as the equipment itself will be treated confidentially.

NAITEC guaranties the results and conclusions contained in this report; the data presented is the result of the tests and measurements carried out with the equipment. These tests are referred to the moment and conditions indicated in this report.

3. TEST CHARACTERISTICS

3.1. TESTS CARRIED OUT

The following services were requested to the EMC division in NAITEC:

1. Radiated Emission. Electromagnetic radiated disturbance measurement (1):

Standard: EN 61326-1:2013.

Limit: EN 61326-1:2013 and UNE-EN 55011:2016, +/A1:2017

(Group 1 Class B device, enclosure port, 3 m distance

measurement).

Method: UNE-EN 55011:2016, +/A1:2017.

2. Conducted Emission. Electromagnetic conducted disturbance measurement:

Standard: EN 61326-1:2013.

Limit: EN 61326-1:2013 and UNE-EN 55011:2016, +/A1:2017

(Group 1 Class B device, AC mains power port).

Method: UNE-EN 55011:2016, +/A1:2017.

3. Immunity to Electrostatic Discharges:

Standard: EN 61326-1:2013.

Failure Criterion: B.

Severity Level: EN 61326-1:2013 (industrial electromagnetic environment).

Method: ME.CM04 and UNE-EN 61000-4-2:2010.

Applied to: EUT's enclosure port.

$^{\mbox{\scriptsize (1)}}$ The marked tests/activities are not supported by

4. Radiated Immunity to RF Field.

Standard: EN 61326-1:2013.

Failure Criterion: A.

Severity Level: EN 61326-1:2013 (industrial electromagnetic environment).

Method: ME.CM06, and UNE-EN 61000-4-3:2007, +/A1:2008,

+/A2:2011.

Applied to: EUT's enclosure port.

5. Conducted Immunity to EFT/Bursts.

Standard: EN 61326-1:2013.

Failure Criterion: B.

Severity Level: EN 61326-1:2013 (industrial electromagnetic environment).

Method: ME.CM03 and UNE-EN 61000-4-4:2013.

Applied to: AC mains power port, I/O signal/control ports.

6. Conducted Immunity to Surges.

Standard: EN 61326-1:2013.

Failure Criterion: B.

Severity Level: EN 61326-1:2013 (industrial electromagnetic environment).

Method: ME.CM08 and UNE-EN 61000-4-5:2015.

Applied to: AC mains power port.

7. Conducted immunity to RF Field.

Standard: EN 61326-1:2013.

Failure Criterion: A.

Severity Level: EN 61326-1:2013 (industrial electromagnetic environment).

Method: ME.CM01 and UNE-EN 61000-4-6:2014.

Applied to: AC mains power port, I/O signal/control ports.

REPORT Nr : PR180759

8. Radiated immunity to Industrial Frequency Magnetic Field.

Standard: EN 61326-1:2013.

Failure Criterion: A.

Severity Level: EN 61326-1:2013 (industrial electromagnetic environment).

Method: ME.CM02 and UNE-EN 61000-4-8:2011.

Applied to: EUT's enclosure port.

9. Conducted immunity to voltage dips and short interruptions.

Standard: EN 61326-1:2013.

Failure Criterion: B and C.

Severity Level: EN 61326-1:2013 (industrial electromagnetic environment).

Method: ME.CM07 and UNE-EN 61000-4-11:2005.

Applied to: AC mains power port.

4. TESTING CONDITIONS

4.1. ENVIRONMENTAL CONDITIONS

The environmental conditions that apply to the tests described in this report were measured in the EMC laboratory of NAITEC. The temperature, humidity and pressure levels present, were always in the most restrictive range applicable to the EMC tests practiced in the laboratory, that is represented in the following table:

Temperature	Min = 15 °C
	Max = 30 °C
Relative Humidity	Min = 45 %
	Max = 60 %
Atmospheric Pressure	Min = 860 mbar Max = 1060 mbar

4.2. EQUIPMENT USED

- Space Saver 26 H Semianechoic Chamber (CM01/14) (Serial Nr 2176)
- Rohde & Schwarz ESR26 EMI Test Receiver (CM01/10) (Serial Nr 1316.3003K26/101302)
- Rohde & Schwarz ESH3-Z5 LISN (CM01/04) (Serial Nr 827246/002)
- ETS 3142D BiconiLog Antenna (CM01/62) (Serial Nr 00122391)
- Schwarzbeck STLP9149 Stacked LogPeriodic Antenna (CM01/50) (Serial Nr STLP9149-004)
- Agilent N5181A signal generator (CM01/06) (Serial Nr MY47071030)
- ar 150W1000 amplifier (CM01/09) (Serial Nr 300665)
- BONN BDC 0810-40/200 bidirectional coupler (CM01/76) (Serial Nr 1610792)
- ar 50S1G4A amplifier (CM01/51) (Serial Nr 0322437)
- BONN BLMA 4060-40 amplifier (CM01/72) (Serial Nr 1510518)
- Rohde & Schwarz NRVD RF wattmeter (CM01/07) (Serial Nr 1000105)
- Rohde & Schwarz URV5-Z4 voltage probe (CM01/07-01) (Nº serie 838314/039)
- DARE!! CTR1009B Radicentre test system (CM01/75)
- DARE!! RPR2006C Power Sensor (CM01/73) (Serial Nr 15I00037SN040)
- ETS-Lindgren HI-6105 electric field probe (CM01/44) (Serial Nr 00061400)
- PPM Mini Scout Video Monitoring System (CM01/12)

- DARE!! Radimation EMC tests software (CM01/56)
- Schaffner NSG 438 ESD simulator system (CM01/33) (Serial Nr 378)
- Schaffner NSG 2050 module (CM01/26) (Serial Nr 200449-521LU)
- Schaffner PNW 2225 Burst module (CM01/30) (Serial Nr 200448-529LU)
- Schaffner CDN 3425 coupling clamp (CM01/32) (Serial Nr 1943)
- Schaffner PNW 2050 pulse network (CM01/27) (Serial No. 200445-549LU)
- Schaffner CDN 133 coupling/decoupling network (CM01/59) (Serial Nr 34446)
- EM TEST CWS500C Perturbation simulator (CM01/08) (Serial Nr 1001-04)
 - EM Test 6 dB / 75W attenuator (CM01/08-01) (Serial Nr 0002143A)
 - EM Test CDN M3/32A coupling/decoupling network (CM01/08-04) (Serial Nr 9912188C)
 - EM Test F2031 EM Clamp (CM01/08-02)
 - EM Test ICD V2.36 Test Software (CM01/08-09) (Serial Nr 002024)
- Schaffner MFO 6501 Magnetic field generator (CM01/21) (Serial Nr 34278)
- Schaffner INA 702 Magnetic field Antenna (CM01/22) (Serial Nr 131)
- FLUKE 179 multimeter (CM01/47) (Serial Nr 86500139)
- Narda-STS EHP-50D magnetic field probe (CM01/69) (Serial Nr 120WX20743)
- Schaffner WIN 2050 Test Software (CM01/37) (Serial Nr 690-814A)
- SPS EMV D 15000/PAS power system (CM01/78) (Serial Nr A5887 00/1 0417 and A5887 00/2 0417)
- EM Test DPA 503 Harmonics and Flicker meter (CM01/18) (Serial Nr 0604-02)
- Universal Technic Clamp M1.U (CM01/18-02) (Serial Nr 0604-02 L1)
- Isolation Transformer (CM01/15)

4.3. TESTS TIME MAP

The tests described in this report were carried out at NAITEC's facilities.

TEST	TESTED	TEST DATE	RESULT
	SAMPLE		
Radiated Emission (1)	Α	2019/02/26	Р
Conducted Emission	Α	2019/02/25	Р
Armónicos de corriente	В	2019/07/26	Р
Fluctuaciones de tensión y flicker	В	2019/07/26	Р
Electrostatic Discharge Immunity	В	2019/07/24	Р
Radiated RF Immunity	Α	2019/02/26	F
	В	2019/07/08	Р
EFT / Bursts Immunity	В	2019/07/24	Р
Surge Immunity	В	2019/07/25	Р
Conducted RF Immunity	В	2019/07/23	Р
Magnetic field Immunity	В	2019/07/24	Р
Voltage dips and short interruptions Immunity	В	2019/07/26	Р

5. EUT IDENTIFICATION DATA

5.1. <u>TEST PETITIONER AND EUT SUPPLIER</u>

Name: Monsol Electronic, S.L.

Address: Calle La Gitanilla, 17, Nave 01, portón A.

29004 Málaga (Spain).

Phone: 952 02 05 80.

José Luis Vilches. Contact person:

5.2. <u>TESTED EQUIPMENT IDENTIFICATION</u>

Product: AC Powered device for measurement purposes connected directly

> to a circuit breaker. CcM2 is able to measure voltage, current, power, energy and harmonic distortion of a single-phase with neutral electrical installation. It provides the data via Modbus RTU

RS-485.

Trade mark: EnergyCcM.

Type: CcM2-485.

Hardware version: 1.5 (Sample A and Sample B)

Software version: Unknown (Sample A), 2703 (Sample B)

Manufacturer: Monsol Electronic, S.L.

Address: Calle La Gitanilla, 17, Nave 01, portón A.

29004 Málaga (Spain).

REPORT Nr: PR180759

The equipment tested are described in the following tables:

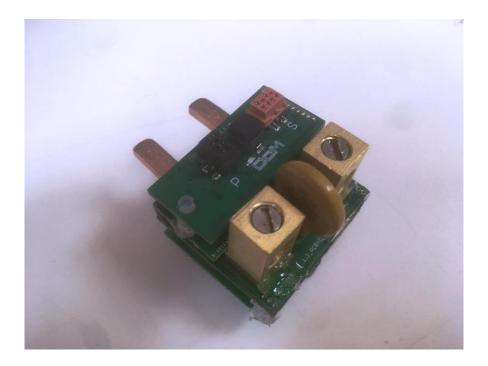
SAMPLE A

CONTROL	RECEPTION	TRADE	SERIAL	TYPE	DESCRIPTION
NUMBER	DATE	MARK	NUMBER		DESCRIPTION
A01	2019/02/25	EnergyCcM		CcM2	AC Powered device for measurement purposes connected directly to a circuit breaker, able to measure voltage, current, power, energy and harmonic distortion of an electrical installation (EUT).
A02	2019/02/25				660 Ω resistive load (AE).
A03	2019/02/25				Control and monitorization PC, and RS485 to USB converter (AE).

EUT: Equipment Under Test. AE: Auxiliary Equipment, not under test

The interfaces corresponding to the tested samples are described below:

INTERFACE Nr TYPE/DESCRIPTIÓN		CABLE LENGTH
I01	AC mains power port (220 Vac / 50 Hz) (L1+N)	L > 3 m
102	AC load port (connected in parallel to L1-N)	L > 3 m
103	RS485 communications port (modbus).	L > 30 m
100	Symmetrical, unshielded line.	E > 30 III


SAMPLE B

On June the 1st, 2019, a new sample is received with a modified version of the firmware that fixed a "bug". The hardware version of this new sample is 1.5, and the software version is 2703.

REPORT Nr : PR180759 Page 12 of 53

5.3. TESTED SAMPLE IMAGE

NOTE: The electromagnetic environment of the EUT could be either "residential, commercial and light industrial" or "industrial". For this reason, the most restrictive conditions were applied during the tests, requesting the compliance of the device with residential limits in emission tests (Group 1 Class B as per UNE-EN 55011:2016, +/A1:2017), and industrial levels in immunity tests (test requirements for equipment intended to be used in an industrial electromagnetic environment as per UNE-EN 61326-1:2013).

5.4. TESTED EQUIPMENT MODES OF OPERATION

During the tests execution, the samples remained on the following operating modes:

- M01 mode of operation:

EUT ON, powered at 220 Vac and 50 Hz. Blue led on the EUT blinking each ten seconds. Auxiliary resistive load (600 Ω) connected between L and N. Auxiliary PC in continuous communication with the DUT, executing a script and reporting its measurement data on the screen each two seconds (approximated current 0.35 A).

5.5. TESTED EQUIPMENT MONITORING CONDITIONS

The properly functioning of the EUT was checked before and after the tests.

During the immunity tests the behaviour of the DUT's led was visually checked. In addition, the information about the measurement data obtained by the DUT and provided by the auxiliary PC, was checked. Any other possible failures like communication losses, were also monitored with the PC.

5.6. PERFORMANCE CRITERIA APPLIED

- Performance criterion A: The DUT will work as expected during the tests. A maximum error of ±1% of full scale in the current measurement will be admitted during and after the test, that is ±2 mA. No communication losses or degradations in the behaviour of the DUT's led will be allowed during or after the tests.
- Performance criterion B: The DUT will work as expected after the tests. Certain degradation or loss of function will be admitted during them, provided that the EUT recovers itself after the application of the interference, returning to its original operation mode without any help from the user. The allowed degradation or loss of function would include events such as communication losses or unexpected blinkings on the DUT's led, or current measurement errors above ±1% of full scale.
- Performance criterion C: The DUT will work as expected after the tests. Certain degradation or loss of function will be admitted during them, provided that the EUT recovers its functioning mode after the application of the interference, either by itself

or with the help of the user. The allowed degradation or loss of function would include events such as communication losses or unexpected blinkings on the DUT's led, or current measurement errors above $\pm 1\%$ of full scale.

Page 15 of 53

6. TEST RESULTS

6.1. EMISSION RESULTS

6.1.1. CONDUCTED EMISSION. HARMONIC CURRENT MEASUREMENT

LIMITS OF PERMISSIBLE HARMONIC CURRENT

The applicable limits for the measurement of perturbing harmonic current on the AC mains port, according to the standard UNE-EN 61000-3-2:2014, for Class A equipment, are as follow:

Odd ha	rmonics	Even harmonics		
Harmonic order	Maximum current (A)	Harmonic order	Maximum current (A)	
3	2.30	2	1.08	
5	1.14	4	0.43	
7	0.77	6	0.30	
9	0.40	$8 \le n \le 40$	0.23 8/n	
11	0.33			
13	0.21			
$15 \le n \le 39$	0.15 15/n			

TESTING METHOD

According to the standard UNE-EN 61000-3-2:2014 and internal method ME.CM10.

MODES OF OPERATION

The sample tested was ON, and remained in the mode of operation M01 during the test.

The tested sample was the Sample B.

REPORT Nr : PR180759

Page 16 of 53

TEST RESULTS

P: Pass, F: Fail, NA:Not Applicable, NM: Not Measured

Description	Result
AC mains harmonic current measurement.	Р

Average	Average harmonic current results					
Hn	leff [A]	% of Limit	Limit [A]	Result		
1	356.795E-3					
2	363.440E-6	0.034	1.08	PASS		
3	5.891E-3	0.256	2.30	PASS		
4	368.882E-6	0.086	430.00E-3	PASS		
5	5.979E-3	0.524	1.14	PASS		
6	346.196E-6	0.115	300.00E-3	PASS		
7	4.658E-3	0.605	770.00E-3	PASS		
8	386.520E-6	0.168	230.00E-3	PASS		
9	5.081E-3	1.270	400.00E-3	PASS		
10	359.531E-6	0.195	184.00E-3	PASS		
11	4.321E-3	1.309	330.00E-3	PASS		
12	327.562E-6	0.214	153.33E-3	PASS		
13	4.509E-3	2.147	210.00E-3	PASS		
14	323.976E-6	0.247	131.43E-3	PASS		
15	3.907E-3	2.604	150.00E-3	PASS		
16	317.587E-6	0.276	115.00E-3	PASS		
17	3.007E-3	2.272	132.35E-3	PASS		
18	332.940E-6	0.326	102.22E-3	PASS		
19	3.117E-3	2.632	118.42E-3	PASS		
20	335.485E-6	0.365	92.00E-3	PASS		
21	1.925E-3	1.198	160.71E-3	PASS		
22	321.156E-6	0.384	83.64E-3	PASS		
23	1.965E-3	1.339	146.74E-3	PASS		
24	317.700E-6	0.414	76.66E-3	PASS		
25	1.979E-3	1.466	135.00E-3	PASS		
26	310.756E-6	0.439	70.77E-3	PASS		
27	945.557E-6	0.756	124.99E-3	PASS		
28	310.685E-6	0.473	65.71E-3	PASS		
29	1.323E-3	1.137	116.39E-3	PASS		
30	328.857E-6	0.536	61.33E-3	PASS		
31	1.268E-3	1.165	108.87E-3	PASS		
32	327.382E-6	0.569	57.50E-3	PASS		
33	1.169E-3	1.143	102.27E-3	PASS		
34	324.254E-6	0.599	54.12E-3	PASS		
35	1.801E-3	1.867	96.44E-3	PASS		
36	317.577E-6	0.621	51.11E-3	PASS		
37	1.211E-3	1.327	91.21E-3	PASS		
38	326.908E-6	0.675	48.42E-3	PASS		
39	1.555E-3	1.797	86.53E-3	PASS		
40	323.600E-6	0.703	46.00E-3	PASS		

Maximum harmonic current results

Maximui	Maximum harmonic current results						
Hn	leff [A]	% of Limit	Limit [A]	Result			
1	356.990E-3						
2	487.479E-6	0.030	1.62	PASS			
3	5.994E-3	0.174	3.45	PASS			
4	514.567E-6	0.080	645.00E-3	PASS			
5	6.192E-3	0.362	1.71	PASS			
6	478.281E-6	0.106	450.00E-3	PASS			
7	4.789E-3	0.415	1.15	PASS			
8	591.883E-6	0.172	345.00E-3	PASS			
9	5.203E-3	0.867	600.00E-3	PASS			
10	526.983E-6	0.191	276.00E-3	PASS			
11	4.417E-3	0.892	495.00E-3	PASS			
12	415.064E-6	0.180	229.99E-3	PASS			
13	4.612E-3	1.464	315.00E-3	PASS			
14	442.121E-6	0.224	197.15E-3	PASS			
15	4.048E-3	1.799	225.00E-3	PASS			
16	425.476E-6	0.247	172.50E-3	PASS			
17	3.111E-3	1.567	198.52E-3	PASS			
18	483.668E-6	0.315	153.33E-3	PASS			
19	3.253E-3	1.831	177.63E-3	PASS			
20	464.814E-6	0.337	138.00E-3	PASS			
21	2.073E-3	1.290	160.71E-3	PASS			
22	415.906E-6	0.332	125.46E-3	PASS			
23	2.102E-3	1.432	146.74E-3	PASS			
24	416.695E-6	0.362	114.99E-3	PASS			
25	2.083E-3	1.543	135.00E-3	PASS			
26	366.710E-6	0.345	106.16E-3	PASS			
27	1.077E-3	0.861	124.99E-3	PASS			
28	370.256E-6	0.376	98.57E-3	PASS			
29	1.464E-3	1.258	116.39E-3	PASS			
30	459.327E-6	0.499	92.00E-3	PASS			
31	1.376E-3	1.264	108.87E-3	PASS			
32	440.491E-6	0.511	86.25E-3	PASS			
33	1.370E-3	1.339	102.27E-3	PASS			
34	394.842E-6	0.486	81.18E-3	PASS			
35	1.931E-3	2.002	96.44E-3	PASS			
36	390.560E-6	0.509	76.66E-3	PASS			
37	1.336E-3	1.465	91.21E-3	PASS			
38	403.553E-6	0.556	72.63E-3	PASS			
39	1.733E-3	2.002	86.53E-3	PASS			
40	409.988E-6	0.594	69.00E-3	PASS			

Maximum harmonic voltage results

Maximum harmonic voltage results						
Hn	Ueff [V]	Ueff [%]	Limit [%]	Result		
1	230.55	100.237				
2 3	110.54E-3	0.048	0.2	PASS		
3	535.90E-3	0.233	0.9	PASS		
4	97.91E-3	0.043	0.2	PASS		
5	76.20E-3	0.033	0.4	PASS		
6	128.91E-3	0.056	0.2	PASS		
7	50.69E-3	0.022	0.3	PASS		
8	78.64E-3	0.034	0.2	PASS		
9	26.20E-3	0.011	0.2	PASS		
10	34.60E-3	0.015	0.2	PASS		
11	30.83E-3	0.013	0.1	PASS		
12	31.02E-3	0.013	0.1	PASS		
13	22.61E-3	0.010	0.1	PASS		
14	18.91E-3	0.008	0.1	PASS		
15	19.67E-3	0.009	0.1	PASS		
16	22.49E-3	0.010	0.1	PASS		
17	16.85E-3	0.007	0.1	PASS		
18	23.03E-3	0.010	0.1	PASS		
19	12.52E-3	0.005	0.1	PASS		
20	21.30E-3	0.009	0.1	PASS		
21	18.07E-3	0.008	0.1	PASS		
22	14.94E-3	0.006	0.1	PASS		
23	10.89E-3	0.005	0.1	PASS		
24	12.09E-3	0.005	0.1	PASS		
25	16.22E-3	0.007	0.1	PASS		
26	15.89E-3	0.007	0.1	PASS		
27	10.02E-3	0.004	0.1	PASS		
28	13.36E-3	0.006	0.1	PASS		
29	14.58E-3	0.006	0.1	PASS		
30	12.97E-3	0.006	0.1	PASS		
31	9.71E-3	0.004	0.1	PASS		
32	11.04E-3	0.005	0.1	PASS		
33	13.40E-3	0.006	0.1	PASS		
34	10.30E-3	0.004	0.1	PASS		
35	11.10E-3	0.005	0.1	PASS		
36	10.94E-3	0.005	0.1	PASS		
37	10.34E-3	0.004	0.1	PASS		
38	8.88E-3	0.004	0.1	PASS		
39	9.55E-3	0.004	0.1	PASS		
40	11.80E-3	0.005	0.1	PASS		

6.1.2. <u>CONDUCTED EMISSION. VOLTAGE FLUCTUATIONS AND</u> FLICKER

LIMITS OF FLUCTUATING VOLTAGE AND FLICKER

The limits are established for the voltage fluctuations and flicker that may occur on the AC mains port of the EUT. The applicable limits according to the standard UNE-EN 61000-3-3:2013 for equipment without any suplementary condition, are as follow:

- The P_{st} value cannot be above 1.0;
- The relative voltage variation in steady state **d**_c, cannot exceed the value of 3.3 %;
- The maximum relative value of the voltage variation d_{max}, cannot exceed the value of 4 %;
- The value d(t) during a voltage variation cannot exceed 3,3 % for a time greater than 500 ms;

TESTING METHOD

According to the standard UNE-EN 61000-3-3:2013 and internal method ME.CM11.

MODES OF OPERATION

The sample tested was ON, and remained in the mode of operation M01 during the test.

The tested sample was the Sample B.

TEST RESULTS

P: Pass, F: Fail, NA:Not Applicable, NM: Not Measured

Description	Result
AC mains flicker evaluation	Р

REPORT Nr : PR180759

Maximum Flicker Results:

	EUT values	Limit	Result
Pst	0.028	1.00	PASS
Plt	0.028	0.65	PASS
dc [%]	0.000	3.30	PASS
dmax [%]	0.080	4.00	PASS
dt [s]	0.000	0.50	PASS

6.1.3. RADIATED EMISSION. DISTURBING RADIATED FIELD (1)

LIMITS OF PERMISSIBLE DISRUPTION

The applicable limit for the measurement of electromagnetic radiated disturbance on the surroundings port of the EUT, according to the standard EN 61326-1:2013 and UNE-EN 55011:2016, +/A1:2017, for Group 1 Class B devices, in the frequency range between 30 MHz and 1 GHz, and at a distance of three metres, is as follows:

Frequency range	Limits (dBµV/m)
30 MHz – 230 MHz	40 (QP)
230 MHz – 1000 MHz	47 (QP)

TESTING METHOD

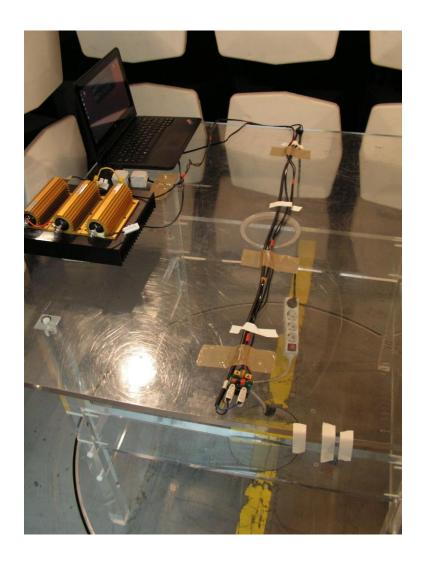
According to the standard UNE-EN 55011:2016, +/A1:2017, for table standing equipment and 3 m distance measurement, with the exception that the antenna reached a maximum height of 2 m during the test. The measurement was carried out inside of an anechoic screened chamber.

MODES OF OPERATION

The sample remained in the mode of operation M01 during the test.

Once the equipment was turned on, approximately 5 minutes were waited until its warming up and stabilization.

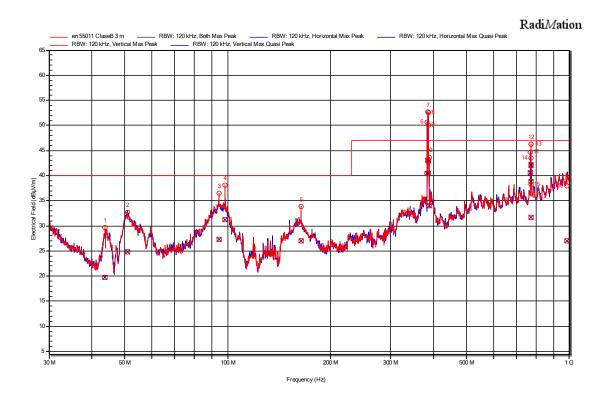
The sample tested was the sample A.


REPORT Nr : PR180759

Page 23 of 53

TEST SETUP

TEST RESULTS


P: Pass, F: Fail, NA:Not Applicable, NM: Not Measured

Description	Result
Radiated Emission. 30 MHz to 1 GHz.	Р

TABLES AND GRAPHICAL RESULTS

Peak Number	Frequency	Quasi-Peak	Quasi-Peak Limit	Status	Angle	Height	Polarization
1	43,83 MHz	19,8 dBµV/m	40 dBµV/m	Pass	15 degrees	1 m	Vertical
2	50,91 MHz	24,8 dBµV/m	40 dBµV/m	Pass	25 degrees	1 m	Vertical
3	94,2 MHz	27,3 dBµV/m	40 dBµV/m	Pass	10 degrees	1,76 m	Vertical
4	98,31 MHz	31,2 dBµV/m	40 dBµV/m	Pass	10 degrees	1,95 m	Vertical
5	163,86 MHz	27,1 dBµV/m	40 dBµV/m	Pass	350 degrees	2 m	Vertical
6	384 MHz	40,4 dBµV/m	47 dBµV/m	Pass	315 degrees	99 cm	Vertical
7	385,02 MHz	43 dBµV/m	47 dBµV/m	Pass	315 degrees	1 m	Horizontal
8	386,04 MHz	43 dBµV/m	47 dBµV/m	Pass	315 degrees	1,04 m	Vertical
9	387,06 MHz	40,5 dBµV/m	47 dBµV/m	Pass	315 degrees	98 cm	Vertical
10	388,08 MHz	34 dBµV/m	47 dBµV/m	Pass	315 degrees	1 m	Vertical
11	769,02 MHz	40,5 dBµV/m	47 dBµV/m	Pass	360 degrees	2 m	Horizontal
12	770,04 MHz	42,2 dBµV/m	47 dBµV/m	Pass	360 degrees	1,95 m	Vertical
13	771,06 MHz	42,1 dBµV/m	47 dBµV/m	Pass	360 degrees	1,8 m	Horizontal
14	772,08 MHz	38,9 dBµV/m	47 dBµV/m	Pass	360 degrees	2 m	Vertical
15	773,1 MHz	31,7 dBµV/m	47 dBµV/m	Pass	360 degrees	1,8 m	Vertical
16	980,94 MHz	27 dBµV/m	47 dBµV/m	Pass	5 degrees	99 cm	Vertical

6.1.4. <u>CONDUCTED EMISSION.</u> <u>CONDUCTED DISTURBANCE</u> MEASUREMENT

LIMITS OF PERMISSIBLE DISRUPTION

The applicable limit for the measurement of electromagnetic conducted disturbance on the AC mains port of the EUT, according to the standard EN 61326-1:2013 and UNE-EN 55011:2016, +/A1:2017, for Group 1 Class B devices, in the frequency range between 150 kHz and 30 MHz, is as follows:

Frequency range	QP Limits (dBμV/m)	AVG Limits (dBµV/m)
150 kHz – 500 kHz	66 to 56	56 to 46
500 kHz – 5 MHz	56	46
5 MHz – 30 MHz	60	50

TESTING METHOD

According to the standard UNE-EN 55011:2016, +/A1:2017, for table standing equipment. The measurement was carried out inside of an anechoic screened chamber.

MODES OF OPERATION

The sample remained in the mode of operation M01 during the test.

Once the equipment was turned on, approximately 5 minutes were waited until its warming up and stabilization.

The sample tested was the sample A.

TEST SETUP

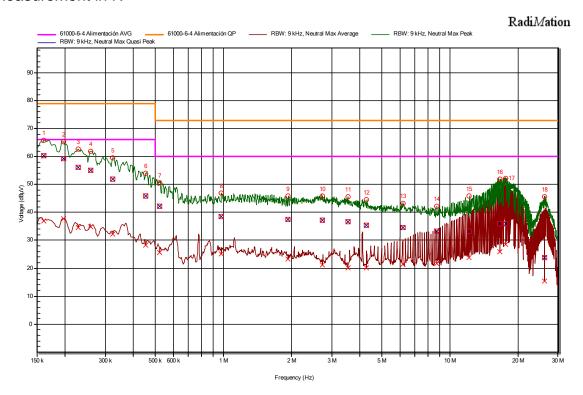
TEST RESULTS

P: Pass, F: Fail, NA:Not Applicable, NM: Not Measured

Description	Result
Conducted Emission. 150 kHz to 30 MHz.	Р

TABLES AND GRAPHICAL RESULTS

Measurement in L1



Peak Number	Frequency	Average	Average Limit	Quasi-Peak	Quasi-Peak Limit	Status
1	161,25 kHz	39 dBµV	55,4 dBµV	62,9 dBµV	65,4 dBµV	Pass
2	168 kHz	37,4 dBµV	55,1 dBµV	62 dBµV	65,1 dBµV	Pass
3	201,75 kHz	37,1 dBµV	53,5 dBµV	60,6 dBµV	63,5 dBµV	Pass
4	226,5 kHz	35,8 dBµV	52,6 dBµV	58,3 dBµV	62,6 dBµV	Pass
5	269,25 kHz	34,1 dBµV	51,1 dBµV	56 dBµV	61,1 dBµV	Pass
6	303 kHz	32,7 dBµV	50,2 dBµV	53,6 dBµV	60,2 dBµV	Pass
7	339 kHz	32,9 dBµV	49,2 dBµV	51,4 dBµV	59,2 dBµV	Pass
8	370,5 kHz	33,7 dBµV	48,5 dBµV	51 dBµV	58,5 dBµV	Pass
9	395,25 kHz	31,5 dBµV	48 dBµV	49,7 dBµV	58 dBµV	Pass
10	471,75 kHz	29,9 dBµV	46,5 dBµV	45,9 dBµV	56,5 dBµV	Pass
11	539,25 kHz	27,5 dBµV	46 dBµV	43,2 dBµV	56 dBµV	Pass
12	575,25 kHz	28,3 dBµV	46 dBµV	41,7 dBµV	56 dBµV	Pass
13	604,5 kHz	30,3 dBµV	46 dBµV	41,2 dBµV	56 dBµV	Pass
14	1,063 MHz	29,9 dBµV	46 dBµV	42,3 dBµV	56 dBµV	Pass
15	2,312 MHz	27,8 dBµV	46 dBµV	40,3 dBµV	56 dBµV	Pass
16	3,008 MHz	27 dBµV	46 dBµV	39,9 dBµV	56 dBµV	Pass
17	3,622 MHz	24,6 dBµV	46 dBµV	37,1 dBµV	56 dBµV	Pass
18	15,398 MHz	26,3 dBµV	50 dBµV	39,4 dBµV	60 dBµV	Pass
19	16,242 MHz	26,1 dBµV	50 dBµV	38,7 dBµV	60 dBµV	Pass
20	17,428 MHz	27,2 dBµV	50 dBµV	46,5 dBµV	60 dBµV	Pass

Measurement in N

Peak Number	Frequency	Average	Average Limit	Quasi-Peak	Quasi-Peak Limit	Status
1	161,25 kHz	37,1 dBµV	66 dBµV	60,3 dBµV	79 dBµV	Pass
2	197,25 kHz	37,7 dBµV	66 dBµV	59,2 dBµV	79 dBµV	Pass
3	228,75 kHz	34,7 dBµV	66 dBµV	56,1 dBµV	79 dBµV	Pass
4	260,25 kHz	34,8 dBµV	66 dBµV	55 dBµV	79 dBµV	Pass
5	325,5 kHz	32,3 dBµV	66 dBµV	51,8 dBµV	79 dBµV	Pass
6	453,75 kHz	28,4 dBµV	66 dBµV	45,8 dBµV	79 dBµV	Pass
7	523,5 kHz	25,5 dBµV	60 dBµV	42,1 dBµV	73 dBµV	Pass
8	980,25 kHz	25,1 dBµV	60 dBµV	38,5 dBµV	73 dBµV	Pass
9	1,932 MHz	23,3 dBµV	60 dBµV	37,5 dBµV	73 dBµV	Pass
10	2,729 MHz	21,3 dBµV	60 dBµV	37,2 dBµV	73 dBµV	Pass
11	3,536 MHz	20,2 dBµV	60 dBµV	36,7 dBµV	73 dBµV	Pass
12	4,288 MHz	20,2 dBµV	60 dBµV	35,5 dBµV	73 dBµV	Pass
13	6,187 MHz	21,5 dBµV	60 dBµV	34,6 dBµV	73 dBµV	Pass
14	8,745 MHz	21,8 dBµV	60 dBµV	33,3 dBµV	73 dBµV	Pass
15	12,174 MHz	23,8 dBµV	60 dBµV	33,3 dBµV	73 dBµV	Pass
16	16,634 MHz	26 dBµV	60 dBµV	35,8 dBµV	73 dBµV	Pass
17	17,662 MHz	28,6 dBµV	60 dBµV	36 dBµV	73 dBµV	Pass
18	26,063 MHz	15,5 dBµV	60 dBµV	23,9 dBµV	73 dBµV	Pass

6.2. <u>IMMUNITY RESULTS</u>

6.2.1. IMMUNITY TO ELECTROSTATIC DISCHARGES

TEST PLAN

MODES OF OPERATION

The sample remained in the mode of operation M01 during the test...

Once the equipment was turned on, approximately 5 minutes were waited until its warming up and stabilization.

SAMPLE'S CONFIGURATION

The EUT was mounted according to the specifications given by the manufacturer for the mode of operation used in the test. The sample was mounted as a table standing equipment, being this setup the most similar to a real EUT's installation.

The sample tested was the sample B.

➤ The severity level applied was according to the standard EN 61326-1:2013 for equipment intended to be used in an industrial electromagnetic environment:

Discharge type	Level	Nr of discharges
Contact discharge	± 2 kV, ± 4 kV	10 per level and polarity
Air discharge	± 2 kV, ± 4 kV, ± 8 kV	10 per level and polarity

Performance Criteria Applied:

Performance Criterion B.

Application Method:

According to the standard UNE-EN 61000-4-2:2010 and internal method ME.CM04.

Ten discharges were applied for each test level and polarity, with 1 second interval between them.

NOTE: Only indirect contact discharges were applied to the EUT, as the device is not accesible to the user during operation.

> REPORT Nr: PR180759 Page 30 of 53

TEST SETUP

TEST RESULTS

P: Pass, F: Fail, NA: Not applicable, NM: Not measured

Description	Result
Indirect Discharge. Contact discharge.	Р
Applied on the Vertical Coupling Plane, placed on the four sides of the EUT.	
Voltage applied: ±2 kV and ±4 kV.	
Comments: No anomalies are observed.	
Indirect Discharge. Contact discharge.	Р
Applied on the Horizontal Coupling Plane, under the EUT.	
Voltage applied: ±2 kV and ±4 kV.	
Comments: No anomalies are observed	

6.2.2. IMMUNITY TO RF FIELDS

TEST PLAN

MODES OF OPERATION

The sample remained in the mode of operation M01 during the test.

Once the equipment was turned on, approximately 5 minutes were waited until its warming up and stabilization.

> SAMPLE'S CONFIGURATION

The EUT was mounted according to the specifications given by the manufacturer for the mode of operation used in the test.

The test was carried out inside of a semianechoic screened chamber.

The samples tested were the sample A and the sample B.

➤ The severity level applied was according to the standard EN 61326-1:2013 for equipment intended to be used in an industrial electromagnetic environment, exposing the EUT to a radiated field with the following characteristics:

Frequency Ranges	Modulation	Test Voltage
80 MHz – 1000 MHz	AM 80% 1 kHz	10 V/m
1.4 GHz – 2 GHz	AM 80% 1 kHz	3 V/m
2 GHz – 2.7 GHz	AM 80% 1 kHz	1 V/m

In this test the frequency sweep was incremented by 1%, and the dwell time was 3 seconds. The delay time was 0 seconds.

Performance Criteria Applied:

Performance Criterion A.

Application Method:

According to standard 61000-4-3:2007, +/A1:2008, +/A2:2011 and internal method ME.CM06.

REPORT Nr : PR180759 Page 33 of 53

TEST SETUP

TEST RESULTS

P: Pass, F: Fail, NA: Not applicable, NM: Not measured.

Description	Result
Frequency interval: 80 MHz – 1 GHz. Field: 10 V/m.	F
AM Modulation 80%, 1 kHz. 0º (EUT´s front view). Horizontal Polarization.	
Sample A.	
Comments: The communication with the device is lost around 95 MHz.	
Frequency interval: 80 MHz – 1 GHz. Field: 10 V/m.	Р
AM Modulation 80%, 1 kHz. 0º (EUT´s front view). Horizontal Polarization.	
Sample B.	
Comments: No anomalies are observed.	
Frequency interval: 80 MHz – 1 GHz. Field: 10 V/m.	Р
AM Modulation 80%, 1 kHz. 90°. Horizontal Polarization.	
Sample B.	
Comments: No anomalies are observed.	
Frequency interval: 80 MHz – 1 GHz. Field: 10 V/m.	Р
AM Modulation 80%, 1 kHz. 0º (EUT´s front view). Vertical Polarization.	
Sample B.	
Comments: No anomalies are observed.	
Frequency interval: 80 MHz – 1 GHz. Field: 10 V/m.	Р
AM Modulation 80%, 1 kHz. 90°. Vertical Polarization.	
Sample B.	
Comments: No anomalies are observed.	
Frequency interval: 1.4 GHz – 2 GHz. Field: 3 V/m.	Р
AM Modulation 80%, 1 kHz. 0º (EUT´s front view). Horizontal Polarization.	
Sample B.	
Comments: No anomalies are observed.	
Frequency interval: 1.4 GHz – 2 GHz. Field: 3 V/m.	Р
AM Modulation 80%, 1 kHz. 90°. Horizontal Polarization.	
Sample B.	
Comments: No anomalies are observed.	

Frequency interval: 1.4 GHz – 2 GHz. Field: 3 V/m.	Р
AM Modulation 80%, 1 kHz. 0º (EUT´s front view). Vertical Polarization.	
Sample B.	
Comments: No anomalies are observed.	
Frequency interval: 1.4 GHz – 2 GHz. Field: 3 V/m.	Р
AM Modulation 80%, 1 kHz. 90°. Vertical Polarization.	
Sample B.	
Comments: No anomalies are observed.	
Frequency interval: 2 GHz – 2.7 GHz. Field: 1 V/m.	Р
AM Modulation 80%, 1 kHz. 0º (EUT´s front view). Horizontal Polarization.	
Sample B.	
Comments: No anomalies are observed.	
Frequency interval: 2 GHz – 2.7 GHz. Field: 1 V/m.	Р
AM Modulation 80%, 1 kHz. 90°. Horizontal Polarization.	
Sample B.	
Comments: No anomalies are observed.	
Frequency interval: 2 GHz – 2.7 GHz. Field: 1 V/m.	Р
AM Modulation 80%, 1 kHz. 0° (EUT's front view). Vertical Polarization.	
Sample B.	
Comments: No anomalies are observed.	
Frequency interval: 2 GHz – 2.7 GHz. Field: 1 V/m.	Р
AM Modulation 80%, 1 kHz. 90°. Vertical Polarization.	
Sample B.	
Comments: No anomalies are observed.	

REPORT Nr : PR180759 Page 36 of 53

6.2.3. <u>IMMUNITY TO EFT/BURSTS</u>

TEST PLAN

MODES OF OPERATION

The sample remained in the mode of operation M01 during the test..

Once the equipment was turned on, approximately 5 minutes were waited until its warming up and stabilization.

> SAMPLE'S CONFIGURATION

The EUT was mounted according to the specifications given by the manufacturer for the mode of operation used in the test. The sample was mounted as a table standing equipment, being this setup the most similar to a real EUT's installation. The sample tested was the sample B.

➤ The severity level applied was according to the standard EN 61326-1:2013 for equipment intended to be used in an industrial electromagnetic environment:

Port	Repetition	Level (kV)	Duration
	frequency		
AC power ports	5 kHz	± 2 kV	1 minute/polarity
I/O signal/control	5 kHz	± 1 kV	1 minute/polarity

Performance Criteria Applied:

Performance Criterion B.

Application Method:

According to standard UNE-EN 61000-4-4:2013 and internal method ME.CM03.

REPORT Nr : PR180759

Page 37 of 53

TEST RESULTS

P: Pass, F: Fail, NA: Not applicable, NM: Not measured.

Description	Result
Tested interface: I01 (L1, N). Direct coupling.	Р
Level: ± 2 kV.	
Comments: No anomalies are observed.	
Tested interface: I02. Capacitive coupling.	Р
Level: ± 2 kV.	
Comments: No anomalies are observed.	
Tested interface: I03. Capacitive coupling.	Р
Level: ± 1 kV.	
Comments: No anomalies are observed.	

6.2.4. IMMUNITY TO SURGES

TEST PLAN

MODES OF OPERATION

The sample remained in the mode of operation M01 during the test.

Once the equipment was turned on, approximately 5 minutes were waited until its warming up and stabilization.

> SAMPLE'S CONFIGURATION

The EUT was mounted according to the specifications given by the manufacturer for the mode of operation used in the test. The sample was mounted on a 10 cm isolating platform, over the earth reference plane.

The sample tested was the sample B.

➤ The severity level applied was according to the standard EN 61326-1:2013 for equipment intended to be used in an industrial electromagnetic environment:

Port	Level (kV)	Nr of pulses
	$\pm 0.5 \text{ kV}, \pm 1 \text{ kV}, \pm 2 \text{ kV}$	
AC power ports	(common mode)	5 pulses/polarity
7.0 power porte	± 0.5 kV, ± 1 kV	o palooo, polarity
	(differential mode)	
I/O signal/control	± 0.5 kV, ± 1 kV	5 pulses/polarity
(long-distance lines)	(common mode)	o puises/polarity

Performance Criteria Applied:

Performance Criterion B.

Application Method:

According to standard UNE-EN 61000-4-5:2015 and internal method ME.CM08. The normal functioning of the EUT cannot be achieved because of the impact of the CDN on it, so following the recommendations of UNE-EN 61000-4-5:2015, no surge tests were applied on this line.

TEST RESULTS

P: Pass, F: Fail, NA: Not applicable, NM: Not measured.

Description	Result
Tested interface: I01. (L1-N)	Р
Z _{out} : 2 Ω. Phase coupling: 0°, 90°, 180° and 270°.	
Level: \pm 0.5 kV and \pm 1 kV.	
Comments: No anomalies are observed.	
Tested interface: I01. (L1-PE)	Р
Z _{out} : 12 Ω. Phase coupling: 0°, 90°, 180° and 270°.	
Level: \pm 0.5 kV, \pm 1 kV and \pm 2 kV.	
Comments: No anomalies are observed.	
Tested interface: I01. (N-PE)	Р
Z _{out} : 12 Ω. Phase coupling: 0°, 90°, 180° and 270°.	
Level: \pm 0.5 kV, \pm 1 kV and \pm 2 kV.	
Comments: No anomalies are observed.	

6.2.5. IMMUNITY TO COMMON MODE RF FIELD

TEST PLAN

MODES OF OPERATION

The sample remained in the mode of operation M01 during the test.

Once the equipment was turned on, approximately 5 minutes were waited until its warming up and stabilization.

> SAMPLE'S CONFIGURATION

The EUT was mounted according to the specifications given by the manufacturer for the mode of operation used in the test. The sample was mounted on a 10 cm isolating platform, over the earth reference plane.

The sample tested was the sample B.

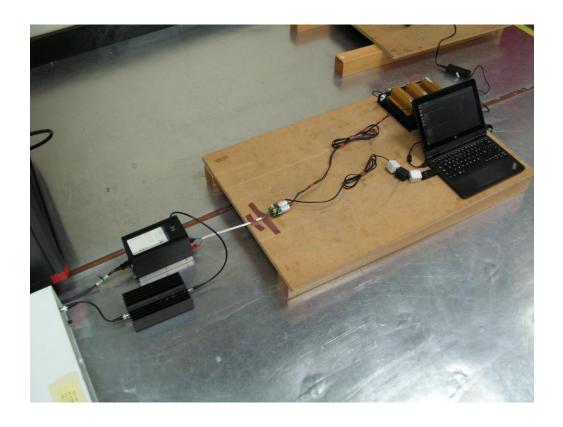
- The EUT was tested as a simple unit.
- ➤ The severity level applied was according to the standard EN 61326-1:2013 for equipment intended to be used in an industrial electromagnetic environment, exposing the EUT to an induced voltage with the following characteristics:

Port	Frequency Ranges	Modulation	Test
			Voltage
AC power ports			
I/O signal/control	0,15 MHz – 80 MHz	AM 80% 1 kHz	3 Vrms
(long-distance lines)			

In this test the frequency sweep was incremented by 1%, and the dwell time was 3 seconds. The delay time was 0 seconds.

Performance Criteria Applied:

Performance Criterion A.


Application Method:

According to the standard UNE-EN 61000-4-6:2014 and internal method ME.CM01.

REPORT Nr : PR180759 Page 42 of 53

TEST RESULTS

P: Pass, F: Fail, NA: Not applicable, NM: Not measured.

Description	Result
Frequency range: 0,15 MHz – 80 MHz.	Р
Field level: 3 Vrms over 150 Ω . AM modulation, 80% with 1 kHz.	
Tested interface: I01. Coupling through CDN.	
Comments: No anomalies are observed.	
Frequency range: 0,15 MHz – 80 MHz.	Р
Field level: 3 Vrms over 150 Ω . AM modulation, 80% with 1 kHz.	
Tested interface: I02. Coupling through EM Clamp.	
Comments: No anomalies are observed.	
Frequency range: 0,15 MHz – 80 MHz.	Р
Field level: 3 Vrms over 150 Ω . AM modulation, 80% with 1 kHz.	
Tested interface: I03. Coupling through EM Clamp.	
Comments: No anomalies are observed.	

REPORT Nr : PR180759 Page 44 of 53

6.2.6. IMMUNITY TO INDUSTRIAL FREQUENCY MAGNETIC FIELD

TEST PLAN

MODES OF OPERATION

The sample remained in the mode of operation M01 during the test.

Once the equipment was turned on, approximately 5 minutes were waited until its warming up and stabilization.

> SAMPLE'S CONFIGURATION

The EUT was mounted according to the specifications given by the manufacturer for the mode of operation used in the test. The sample was mounted as a table standing equipment, being this setup the most similar to a real EUT's installation. The sample tested was the sample B.

➤ The severity level applied was according to the standard EN 61326-1:2013 for equipment intended to be used in an industrial electromagnetic environment:

Frequency	Level	Duration
50 Hz	30 A/m	1 minute/axis
60 Hz	30 A/m	1 minute/axis

Performance Criteria Applied:

Performance Criterion A.

Application Method:

According to standard UNE-EN 61000-4-8:2011 and internal method ME.CM02.

REPORT Nr : PR180759

Page 45 of 53

TEST RESULTS

P: Pass, F: Fail, NA: Not applicable, NM: Not measured.

Description	Result
Frequency: 50 Hz.	Р
Level: 30 A/m.	
H field orientation: X axis.	
Comments: No anomalies are observed.	
Frequency: 50 Hz.	Р
Level: 30 A/m.	
H field orientation: Y axis.	
Comments: No anomalies are observed.	
Frequency: 50 Hz.	Р
Level: 30 A/m.	
H field orientation: Z axis.	
Comments: No anomalies are observed.	
Frequency: 60 Hz.	Р
Level: 30 A/m.	
H field orientation: X axis.	
Comments: No anomalies are observed.	
Frequency: 60 Hz.	Р
Level: 30 A/m.	
H field orientation: Y axis.	
Comments: No anomalies are observed.	
Frequency: 60 Hz.	Р
Level: 30 A/m.	
H field orientation: Z axis.	
Comments: No anomalies are observed.	

REPORT Nr : PR180759 Page 47 of 53

6.2.7. IMMUNITY TO VOLTAGE DIPS AND SHORT INTERRUPTIONS

TEST PLAN

MODES OF OPERATION

The sample remained in the mode of operation M01 during the test.

Once the equipment was turned on, approximately 5 minutes were waited until its warming up and stabilization.

> SAMPLE'S CONFIGURATION

The EUT was mounted according to the specifications given by the manufacturer for the mode of operation used in the test. The sample was mounted as a table standing equipment, being this setup the most similar to a real EUT's installation. The sample tested was the sample B.

➤ The severity level applied was according to the standard EN 61326-1:2013 for equipment intended to be used in an industrial electromagnetic environment:

Phenomena	Severity level	Performance criteria
Short	0% U _{nom} during 1 period (50 Hz and 60 Hz)	В
interruptions	0% U _{nom} during 250/300 periods (50/60 Hz)	С
Voltage dips	40% U _{nom} during 10/12 periods (50/60 Hz)	С
. smage dipe	70% U _{nom} during 25/30 periods (50/60 Hz)	С

Performance Criteria Applied:

Performance Criterion B and C.

> Application Method:

According to standard UNE-EN 61000-4-11:2005 and internal method ME.CM07.

REPORT Nr : PR180759 Page 48 of 53

TEST RESULTS

P: Pass, F: Fail, NA: Not applicable, NM: Not measured.

Description	Result
100 % short interruptions. (0 % U _{nom} test level).	С
Nr of repetitions: 3. Phase coupling: 0°.	
Duration and time between repetitions: 20 ms (10 s between repetitions).	
Tested interface: I01.	
Frequency: 50 Hz.	
Performance criteria: B.	
Comments: No anomalies are observed.	
60 % voltage dips. (40 % U _{nom} test level).	С
Nr of repetitions: 3. Phase coupling: 0°.	
Duration and time between repetitions: 200 ms (10 s between repetitions).	
Tested interface: I01.	
Frequency: 50 Hz.	
Performance criteria: C.	
Comments: No anomalies are observed.	
30 % voltage dips. (70 % U _{nom} test level).	С
Nr of repetitions: 3. Phase coupling: 0°.	
Duration and time between repetitions: 500 ms (10 s between repetitions).	
Tested interface: I01.	
Frequency: 50 Hz.	
Performance criteria: C.	
Comments: No anomalies are observed.	

100 % short interruptions. (0 % U _{nom} test level).	С
Nr of repetitions: 3. Phase coupling: 0°.	
Duration and time between repetitions: 5 s (10 s between repetitions).	
Tested interface: I01.	
Frequency: 50 Hz.	
Performance criteria: C.	
Comments: The DUT turns off during each short interruption and the auxiliary	
PC reports that the device is not connected. The DUT recovers itself after each	
interruption.	
100 % short interruptions. (0 % Unom test level).	С
Nr of repetitions: 3. Phase coupling: 0°.	
Duration and time between repetitions: 20 ms (10 s between repetitions).	
Tested interface: I01.	
Frequency: 60 Hz.	
Performance criteria: B.	
Comments: No anomalies are observed.	
60 % voltage dips. (40 % Unom test level).	С
Nr of repetitions: 3. Phase coupling: 0°.	
Duration and time between repetitions: 200 ms (10 s between repetitions).	
Tested interface: I01.	
Frequency: 60 Hz.	
Performance criteria: C.	
Comments: No anomalies are observed.	
30 % voltage dips. (70 % Unom test level).	С
Nr of repetitions: 3. Phase coupling: 0°.	
Duration and time between repetitions: 500 ms (10 s between repetitions).	
Tested interface: I01.	
Frequency: 60 Hz.	
Performance criteria: C.	
Comments: No anomalies are observed.	

100 % short interruptions. (0 % Unom test level).

Nr of repetitions: 3. Phase coupling: 0°.

Duration and time between repetitions: 5 s (10 s between repetitions).

Tested interface: I01.

Frequency: 60 Hz.

Performance criteria: C.

Comments: The DUT turns off during each short interruption and the application on the auxiliary PC reports that the device is not connected. The DUT recovers itself after each interruption.

REPORT Nr : PR180759 Page 52 of 53

Development date: Noain, August 29th, 2019

Developed by: Iosu Martínez

Approved by: Ana Resano

The indicated results exclusively refer to the sample, product or material handed over to the Laboratory, as mentioned in the corresponding section, and tested under the conditions mentioned in the procedures and norms quoted in this document.

The Laboratory keeps record of the uncertainties of the quantitative tests that require doing so.

The present document collects a technical report of strict personal character, to be used by the CUSTOMER, not being an expertise or expert report in any case; therefore, should it be submitted as proof at a Trial or Arbitration, it would be void as a such proof, FUNDACIÓN CETENA (NAITEC) not being obliged to its upholding or explanation before any Court or Arbitration.

REPORT Nr : PR180759

Page 53 of 53